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The serf-consistent interaction of high-frequency antenna-generated field with low-frequency plasma motion is derived 
for multiflui¢l dynamics and magnetohydrodynamics. Field hamiltonians and Poisson brackets ate obtained, for the low- 
frequency eYolution of pltsma, low-frequency field, and high-frequency amplitude. Casimix functionals ate combined with 
the hamiltoniarm to form Lyapunov functionals, yielding stability criteria. Application to ponderomotive stabilization of 
unstable equilibria is discussed. 

Recent experiments on rf stabilization of the flute instability of plasmas confned in mirror machines [1 ] have 
stimulated new theoretical research to describe the nonlinear interaction of high-frequency fields with low-frequen- 
cy modes of the plasma [2-4] .  Such a stabilization process, if successful, would allow the use of  axisymmetric 
mirrors for plasma confinement, implying simpler design and better transport properties than for minimum.B mir. 
rors. The chief aim of  the theoretical work is to determine stability criteria and the threshold intensity of rf field 
necessary to achieve stabilization. 

The conventional description of the stabilizing effect of high-frequency feld is based on consideration of ion 
drifts [5-7] .  It is argued that stabilization is achieved when the ion ponderomotive drift balances curvature and 
magnetic gradient drifts, so that the charge separation produced by unfavorable average curvature is reversed. This 
approach, however, ignores the mutual interaction between the particles and fields. The necessary self-consistent 
treatment is given in ref. [8], for the system composed of  plasma, low-frequency field, and high-frequency field. 
This system is represented by a field hamiltonian with ponderomotive term, and its associated Poisson bracket. 

We shall use a lagrangian action principle, averaged over the fast time scale (the period of the applied antenna 
current), to derive the ponderomotive hamiltonian and Poiuon bracket for each of two models: the multifluld 
plasma and ideal magnetohydrodynamics. The hamiltonian formulation in the lagrangian description is converted 
to the eulerian description. The resulting evolution equations, for oscillation center densities, momentum densities 
and low frequency electromagnetic field, involve ponderomotive forces and magnetization current created by the 
rf field. The hamiltonian formalism in the eulerian description is degenerate, i.e., there exist Casimir functionals, 
whose Poisson bracket vanishes with any other functional of  the eulerian dynamical variables. It allows the use of 
recently developed techniques '[9] that establish sufficient conditions for Lyapunov stability. The hamiltonian is 
combined with the Casimtr funetionals tO form a Lyapunov'functional, whose local extie,r~a in functional space 
are stable equilibria. By this method we shall derive sufficient criteria for stability of plasma equilibria in the 
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presence of the rf field, and discuss the application of these stability criteria to axisymmetric mirrors. 
The system we consider has four components: first, the plasma, considered as a continuous medium, whose state 

at time t is represented by the position field r(z O, t)(z 0 is the lagrangian coordinate in some reference state, with 
nO(z O) dz 0 particles in volume element dz0); second, the electromagnetic field, represented by the vector potential 
A(x, t), with x an eulerian spatial coordinate (we choose the radiation gauge); third, the antenna, modeled by an ap- 
plied high-frequency current densitYJa(X ) exp(-i60t); finally, a gravitational field - VqJ(x) to mimic the unfavor- 
able average curvature of the magnetic field. 

A complete description of the dynamics is provided by the total lagrangian action, including the action of the 
plasma, of the electromagnetic field, and of the antenna. Variation of the action with respect to the position field 
r(z O, t) yields the Newton-Lorentz equations, and with respect to the potential A(x, t) yields the Maxwell equa- 
tions with plasma and antenna current sources. 

Since the frequency 60 of the antenna field is typically of order of the ion gyrofrequency, much larger than the 
rate 3' at which the flute instability develops, a separation of time scales is appropriate. We represent the total mo- 
tion rtot(Z° , t) of a particle as the sum of the low-frequency motion rc(Z0, t) of its oscillation center, and of the 
high-frequency oscillation, with amplitude r(z O, t) modulated at low frequency: trot(t) = re(t ) + Re It(t) 
X exp(-i60t)]. We use a similar representation for the field: the vector potential Atot(X, t) is the sum of a slow 
(low-frequency) component A s and of a high-frequency component of amplitude A : Atot(X, t) = As(X, t) + Re [A(x, 
t) exp(-i60t)]. 

The action, expressed in terms of these variables, is expanded to second order in the amplitudes and averaged 
over the fast time scale, assuming that no resonance takes place. Terms of order 7/60 are neglected. The new form 
of the action S is the sum of three contributions: 

S=Sc+Ss- f dt V. (1) 

The oscillation-center action is 

so = f dt f n°dz° [½rag 2 +(q/C)ic.As(rc,  t ) - ~I , ( rc)  l , (2) 

a sum over species is implicit. The slow-field action is 

ss = f dt f d3x[(aAs/i)t)2/8nc2 -(curl As)2/8n]. (3) 

The ponderomotive energy V collects terms in the high-frequency amplitude: 

V = f d 3 x [ - - ( A  *.  ¢ .  A)(602/16nc 2) + Icurl A 12/16n - Re(j  a • A)[2c] . (4) 

Here E is the hermitian (since we have excluded resonances) dielectric tensor at frequency 60. The equation satis- 
fied by the high frequency field amplitude A, obtained by setting to zero the variation of V with respect to A, is 
the driven wave equation 

(w2/c2) E" A - curl curl A = --(4rr/c)] a . (5) 

It is important to note that the dielectric tensor t ,  the wave solution A, the ponderomotive energy V, and the 
actions S c and S s are functionals of the fields re(z°, t) and As(x, t). Thus, in the cold plasma approximation adopt- 
ed in this paper, the dielectric tensor is a local function [ 1 0] of the oscillation center densities n o(x, t) and of the 
slow magnetic field B(x, t), which will be precisely defined later. The variation of the new action (1) with respect 
to its variables r e and A s provides the complete set of lagrangian equations for the system. The ponderomotive ef- 
fects appear as a ponderomotive force Fp on an oscillation center, Fp(z 0, t) = - V(6 V/6no) at x = rc(Z0, t), and as 
a magnetization current density Jm(X, t) = curl(--6 V/SB) in Ampere's law. The ponderomotive potential and the 
magnetization are [ 1 1 ] 
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5 V/Sna(x ) = - [A*" (aE/ano)" A ] 6o2/167tc 2 , - 3  V/~B(x) = [,4. (ag/~)B). A] ~2/16rtc 2 , (6,7) 

respectively. This lagrangian description leads to a number of  useful results [8] and is appropriate for comparison 
with particle simulations, but for many applications an eulerian description is more convenient. We show that the 
latter is provided by the appropriate hamiltonian structure of  the system. Following standard procedure [ 12], we 
derive from the expression (1) of  the action the fields pc(Z 0, t) and s(x ,  t), canonically conjugate to re(zO, t) and 
As(x, t). The Poisson bracket in terms of these variables is of course the canonical one. The corresponding hamil- 
tonian is obtained as the Legendre transform of the lagrangian, and is a functional o f t  c, Pc, As, and x. Thus one 
finds the conjugate variables,Pc(Z0, t) = 5S/6r c = n o [rm" e + (q/c)As(re, t)] andx(x, t) = 6S/8(aAs/at)= (i~As/at)/4rtc2, 
the canonical Poisson brackets {re(Z0 ), pc(z0')} = 16(z 0 - z 0 ' )  and {As(x ) ,a (x ' ) }  = I ~(x - x ' ) ,  and the hamil- 
tonian * l 

8 =  v+ f,o o[½  + *('e)] + (curlAs) 2 

It so happens that H can be expressed entirely in terms of the eulerian fields and that the Pok~on bracket of  any 
two of these fields is expressible as a function of themselves [ 14,15]. The eulenan dynamical fields for a cold plas- 
ma are the oscillation center densities no(x, t) = f n0dz 0 5 [x - re(z 0, t)] and flux densities go(x, t) = fn0de  0 X 
;e 5 [x - re(z0, t)l  or velocities u s = gdns, and the slow fields B = curl A~ and E = - c  -1 aAs/at. 

In these eulefian variables, the Poisson bracket becomes the Spencer-Kaufman bracket [ 13,14] and the 
hamiltonian is the total energy: 

u =  v + f d3x ~ "  [lnomou2o + n o~I'a + Uo(no) ] + f d 3 x ( ~ 2  + , : ) / S , ,  
O 

where V is now to be considered as a functional of the fields no(x ) and B (x). This hamiltonian structure yields the 
evolution of  any functional F of  the eulerian fields according to dF/dt  = {F, H}. Thus we find the complete sys- 
tem of equations (species label suppressed): 

m(au/Ot + u " V u) = q (E  + u X B/c) - V ( ¢  + dU/dn + 8 V/Sn), 

aB/at = - c  curl E ,  an~at + V . (nu) = 0 ,  eurl(B + 47r5 V/SB) = (4rt/c) ~ qnu + c -1 aE/at , 
0 

in which the ponderomotive forces and magnetization current appear, as defined in eqs. (6), (7). 
One important consequence of this hamiltonian formulation is that it allows the use of Arnold's stability meth- 

od [9,15]. This method produces simple criteria sufficient for stability of certain nonstatic equilibria, and is 
generalizable to nonlinear stability analysis [9,16]. It exploits the existence of  Casimir functionals for degenerate 
Poisson brackets, in order to construct Lyapunov funetionals. We first discuss the two-dimensional multifluid 
case, with B in the i direction. It is known [16] that a first family of  Casimir functionals is given by C 1 = f dx dy 
X T, o no~o(Za)  , where Z o = (w o + I2o)/no, w o = ~.  curl u o is the vortieity, ~2c, is the signed gyrofrequency, and 
~a  is an arbitrary function of its argument. A second family of  Casimirs is C 2 = f dx dy (T, a qono - V " E/  
4n)~(x), where ~ is an arbitrary function ofx .  

Our Lyapunov functional is the sum of the hamiltonian and the Casimirs: H c = H + C 1 + C 2. The functional 
H e can in fact be considered as a hamiltonian, equivalent to H since they generate the same evolution: for any 
functional G, one has { G, H} = { G, H ~ .  

The critical points of  the Lyapunov functional H c are equilibrium solutions of the system. The first variation 
5H e vanishes for all variations of the eulerian fields, which provides the set of equilibrium equations: 

,1 We add to the low frequency equation a contribution from the plasma internal energy density U. At high frequency, the plasma 
can still be con~fld~ed "cold". 
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E=-Vep  , B2147r + BSV/bB + ~ f~d~ /dZ=0 ,  
0 

mnu=iXVZd2dp/dZ  2 ,  ½mu2+q,+SV/Sn+dU/dn+q~+~p-Zd4p/dZ=O,  

for each species. The functional derivatives of V are given by eqs. (6) and (7), and the high-frequency field A is a 
solution of eq. (5). It is easy to check that the solution of this system is stationary: an/at = {n, H) = {n, He) = O, 
etc. 

The equilibrium is linearly stable if the Lyapunov functional H c is locally a minimum at the stationary point, 
i.e. if its second variation is a positive definite quantity. The second variation, 52Hc, is the conserved hamiltonian 
for the motion linearized around the equilibrium solution where 5H c vanishes, see ref. [9]. Consequently, when the 
quadratic form 52H c is positive definite, it provides a norm which is preserved by the linearized equations, hence 
Lyapunov stability in terms of this norm is implied for the linearized motion. Thus, for the two-dimensional 
multifluid plasma case, the sufficient stability condition is 

0 < 262Hc = f d3x ~ mn 16u + u6nln 12 + f d3x (~E)2 + (6B)2 
o 4Tr 

+ f d3x ~ (Sn)2(d2U/dn 2 - mu21n) + f d3x ~ (SZ)2d2~/dZ 2 
O O 

+ fd3x fd3x'(,B(x),B(x') *2v +2 *2V+ 
6B~B' o 6n6B oo' ~no(x)6no,(x ) I 

where 6Z = (£. curl 8u + QSB/B - ZSn)/n. 
In particular, the second variation 52H c is positive definite if the equilibrium flows are subsonic: mu 2 < nd2U/ 

dn 2, if the equilibrium is such that d 2 ~/dZ 2 > 0, and if the second variation of the ponderomotive energy V is 
positive definite. The self-consistent modification of the high-frequency field in the physical process described by 
the second variation of V, which is given explicitly by 

-(161rc2/ofl) 52 V = fd3xA*, t(2). A - f f  d x' 

where G is the Green function of the operator ¢ - (c2/¢o 2) curl 2, evaluated at equilibrium;K = g (1). A; 8 (1) 
= SB a~/OB + ~'o 8node/and, and =(2) = ½(6B)2a2E/aB2 + Yo 5B 5n a o2E/aBan o. 

We have previously [8] shown that Vis equal to the antenna inductive energy. This interpretation allows one 
to draw the important conclusion that the self-consistent modification o f  the fields is stabilizing i f  the antenna in- 
ductance, in the presence o f  plasma, is minimum for the equilibrium configuration. Note that the ponderomotive 
effects influence the stability, not only by contributing directly to the perturbed energy, but also by modifying 
the equilibrium, and therefore the functions ~o" 

A similar analysis can be carried out for the two-dimensional magnetohydrodynamic model, as we outline brief- 
ly. Now the hamiltonian is a functional of the fluid density n(x, y; t), the magnetic field B(x, y;  t), and the velocity 
field u(x, y; t) contained in the x - y  plane: 

H = V + f dx dy (½mnu 2 + nxP + U + B2/81r). 

The associated Poisson bracket is that of Morrison and Greene [ 17]. The resulting evolution equations are: an~at 
+ v .  (nu) = o, aB/Ot + V .  (Bu) = O, mn(au/at  + u .  V u) = -V(B2/87r) - BV(8 V/SB) - n V ( ~  + dU/dn + 8 V/ 
6n), and the Casimir functional associated with the Poisson bracket is [9] C = f dxdy ndP(B/n), where • is an ar- 
bitrary function of its argument Y = Bin. The appropriate Lyapunov function is, as before, H c = H + C. From 5H c 
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= O, we obtain the stationary equilibrium equations: u = O; B/4~r + 5 V/SB + d~ldY = O;q ~ + 5 V/Sn + dU/dn + 
- Yd4~/dY = O. 

The linear stabili ty condit ion obtained from 52Hc > 0 is 

0 < 252H c = f d3x [mn(Su) 2 + (SB) 2/4n + (Sn) 2 d2U/dn 2 + (5 Y)2(B2/n) d 2 ~P/dY 2 ] 

+ f d3x f d 3 x  ' [Sn(x)Sn(x') 52 V/SnSn' + 5B(x)SB(x')52 V/SBSB' + 25n(x)SB(x')52 V/SnSB'], 

where 5Y/Y = 5BIB - 5n/n. The equilibrium is certainly MHD stable i f  the second variation of  V is positive deft- 
nite, and if  the equilibrium is such that d 2 ~ / d Y  2 > 0. 

I t  is interesting to note the connection o f  the second variation of  the Lyapunov functional H c with the AW varia- 
tional principle derived in ref. [8]. I f  one expresses the variations 5n (etc.) in terms of  the plasma displacement 
~(x, t),  i.e., 5n = - V" (n~), 5B = - V" ( B ~ ,  and 5u = 5~/5t, then the condit ion 82Hc > 0 is equivalent to AW > O. 
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